
Towards Alias-Free Pointers

Naftaly H. Minsky

?

Rutgers University, New Brusnwick NJ 08903 USA

Tel: (908) 445-2085; e-mail: minsky@cs.rutgers.edu

Abstract. This paper argues that pointer-induced aliasing can be avoided

in many cases by means of a concept of unique pointer. The use of such

pointers is expected to fortify the concept of encapsulation, to make sys-

tems easier to reason about, to provide better control over the interaction

between threads, and to make storage management safer and more ef-

�cient. We show that unique pointers can be implemented by means of

few minor and virtually costless modi�cations in conventional OO lan-

guages, such as Ei�el or C++; and that they can be used conveniently

in a broad range of algorithms and data structures.

Key Words and Phrases: pointer-induced aliasing, hiding, encapsulation,

programming with threads, storage management.

?

Work supported by NSF grant No. CCR-9308773.

1 Introduction

Dynamic objects, i.e., objects allocated on the heap and addressed by means

of pointers, are widely considered a mixed blessing in imperative programming.

A blessing, because dynamic objects have some very useful properties, such as

inde�nite lifetime, inde�nite scope, e�cient transferability, and the ability to be

shared by multiple pointers to a single object. But the shareability of dynamic

objects via pointers dispersed throughout a system is very problematic. It allows

for aliases to exist for a given dynamic object, anywhere in the system, making

it hard to to reason about this object; and it undermines the principles of hiding,

and of encapsulation, the very foundations of object-oriented programming. The

virtually uncontrollable dispersal of pointers also makes storage management

more hazardous and costly.

In this paper we argue that pointer-induced aliasing is largely a self in
icted

wound, caused by the almost universal practice in programming to transfer infor-

mation by copy. As a remedy for this defect we introduce a concept unshareable

objects, and the companion concept of unique pointers, which can be moved from

one place to another, but which cannot be copied. We argue that unshareable

objects can be employed conveniently in many, if not most, situations where

dynamic objects are being used, and without incurring their pitfalls. And we

show that it takes no more than minor, and virtually costless, modi�cations to

a typical imperative programming language to support such objects.

For the sake of speci�city we couch our discussion in terms of the object-

oriented language Ei�el [7]. But we believe that the essence of our conclusions

is valid for many other object-oriented languages, and, in a broader sense, is

applicable to imperative languages in general. (A close approximation to unique

pointers under C++ has been constructed.) The rest of this paper is organized

as follows: The pitfalls of conventional pointers are discussed in Section 2; in

Section 3 we describe a simple variant of Ei�el that supports unique pointers;

the use and applications of such pointers are discussed in Section 4; and some

related works are discussed in Section 5.

2 The Pitfalls of Dynamic Objects

Under conventional programming languages, dynamic objects have several pit-

falls, some are better known than others. We start by showing that dynamic

objects are very di�cult to hide in any speci�c locale, due to the virtually un-

controllable dispersal of pointers to such objects. We then brie
y discuss the

di�culties caused by conventional dynamic objects to storage management, to

encapsulation, and to programming with threads.

2.1 The Di�culty in Hiding Dynamic Objects

Although the concept of hiding in software is well known [9] | and is widely con-

sidered the bedrock of modularization and of encapsulation | it is a somewhat

slippery concept, that may have several de�nitions re
ecting di�erent concerns.

The following is one such de�nition, whose full signi�cance will become clear in

due course.

De�nition 1 (a concept of hiding) A component c of object x is considered

hidden in x only if it is not accessible (from anywhere) while x does not have

control. (x is said to have control between the invocation of one of its methods,

and the return from this method.)

Note that although this de�nition of hiding is strictly stronger than hiding by

scope rules, it allows for a component c of an object x to be accessed by other

objects, as long as control is in x. For example, x may invoke operation y.p(c),

thus having procedure p of object y operate on c. (This is one sense in which

the concept of hiding is slippery.)

Now, if a component c of an object x is physically contained in it, as illus-

trated in part (a) of Figure 1, then the condition of De�nition 1 can be readily

established by the scope rules of the language.

2

But if c is a dynamic object,

addressed via a reference variable p c contained in x then, the scope rules are not

2

Actually, even the hiding of such components is rarely, if ever, completely ensured,

because of the unsafe features [2] that most languages have, such as the ability to

use naked C-code in C++, or in procedures of Ei�el. We ignore the e�ect of such

unsafe features in this paper.

su�cient to hide it. Indeed, even if variable p c is not visible from the outside,

the object c itself is quite exposed to any object that may have a pointer to it,

as illustrated by part (b) of Figure 1. Any such object may operate on c even

when x does not have control, in direct contradiction to the above de�nition of

hiding.

x

p_c

c

legend

an object

a pointer variable

(a) x includes c (b) x has a pointer to c

x
c

Fig. 1. The Di�culty in Hiding Dynamic Components

Moreover, under conventional languages, it is virtually impossible to control

the dispersal of pointers for a given object throughout a system, or to �gure

out the extent of such dispersal [5]. This is due to the fact that information is

generally transferred from one place in a system to another by copy | the copy

of pointers when dealing with dynamic objects. This, in particular, is the case

in Ei�el for the assignment statement

u := v;

which (when v is a reference variable) copies the pointer in v into u, leaving v

intact | thus creating a duplicate of this pointer. Therefore, if object x obtained

its component c (that is, the pointer to it) from some other object, then x cannot

tell if there are any pointers to c left elsewhere in the system. Moreover, even if

x itself is the original creator of c, there is very little it can do to prevent the

leakage of pointers to c into other objects in the system. This, because almost

anything that x does with p c would provide other objects with the opportunity

to acquire a duplicate pointer to c. For example, a call y.f(p c) carried out by

x, allows procedure f to save a pointer for c permanently in some attribute of

object y.

2.2 The Adverse e�ects of Dynamic Objects on Storage

Management

In a language without garbage collection, where dynamic objects need to be

deallocated explicitly, the uncontrollable dispersal of pointers causes two kinds

of dire phenomena. First, when an object is deallocated, any surviving pointer to

it, left anywhere is the system, becomes a dangling reference, which may cause

serious errors that are notoriously di�cult to debug. Second, partially due to

the fear from dangling reference one is often reluctant to deallocate an object

even when there is no apparent need for it. This contributes to memory leaks,

which depletes the memory available to the program.

It is because of the specter of dangling reference that languages with garbage

collection do not provide for explicit deallocation of objects. But, as we shall

see later, if such deallocation can be made safe it can be very useful in such

languages, by reducing the amount of garbage collection needed.

2.3 The Con
ict Between Encapsulation and Pointers

Encapsulation is based on the hiding of the constituent parts of the state of

an object from anything but its own program. Such hiding is supposed to have

two distinct consequences, which are critical for large systems: First, it should

provide objects with implementation transparency ; i.e., the ability to change

the internal representation of the state of an object (together with its program)

without having to change anything in the rest of the system. Second, encap-

sulation is supposed to enable us to endow an object with what is sometimes

called invariants (or class invariants). These are properties that \hold whenever

control is not in the object" (Sethi ([10]), and which are completely independent

of the rest of the system.

Now, while implementation transparency can be achieved by \weak hiding,"

via scope rules, invariant properties require the stronger kind of hiding of De�ni-

tion 1. Indeed, our ability to establish properties of an object which are indepen-

dent of the rest of the system, is clearly undermined if this object has dynamic

components, which may be accessible to any number of other objects.

This is a serious problem because invariant properties are essential for mean-

ingful encapsulation, and for abstract data types. Yet, although this problem

with encapsulation is not unknown (see [6] page 159, in particular) it is rarely

discussed in the literature, and has not been satisfactorily resolved so far.

2.4 A Di�culty with Threads

The dispersal of pointers also has an adverse e�ect on programming with threads

[11]. Suppose that x is built as a monitor, meaning that only one thread can

gain access to the internals of x at any given moment in time. This is supposed

to prevent race conditions between processes when they manipulate x.

Unfortunately, if the components of x are dynamic objects, then the mutual

exclusion with respect to x does not prevent race conditions. This is illustrated in

Figure 2, where the component c of x is accessed concurrently by two threads:

T1, which gained exclusive access to x, and T2, which operates concurrently

outside of x, but which may operate on component c of x through one of the

pointers to it dispersed in the system.

3 Unshareable Objects & Unique Pointers

For situations where the dispersal of pointers is undesirable, we introduce the

following concepts:

De�nition 2 A dynamic object is called unshareable, or a u-object, if there

can be only one pointer in the system leading to it. A pointer to a u-object is

called a u-pointer, in part because it is guaranteed to be unique.

legend

an object

a pointer variable

a pointer

a thread

x

p_c

c

T1

T2

Fig. 2. Race Condition Between Threads

We show in this section how these concepts can be supported, and made usable,

under the object-oriented language Ei�el. Technically, we describe a variant of

Ei�el, obtained by a small set of minor modi�cations (de�ned by a set of rules)

of the semantics of this language. We refer to this variant as Ei�el

�

, but what we

really advocate here is that the Ei�el language itself be changed to meet these

rules, and that analogous changes be made in other object-oriented languages,

if necessary. (In certain languages, such as C++, some of these rules can be

established without any changes in the language itself.)

The implementation proposed here for u-objects rests, in part, on a departure

from the almost universal use of copying (the copying of pointers, in the case

of dynamic objects) as the means for transferring information from one place in

the system to another. Generally speaking, we propose that objects designated

as unshareable be transferred by move rather than by copy. In addition, some

constraints are required on the treatment of formal parameters of procedures.

The compile-time cost and the run-time overhead required to establish the rules

advocated here for Ei�el

�

turn out to be quite negligible. Moreover, these rules

impose no constraint on anything not involving u-objects.

A disclaimer is in order here: The assurance provided by Ei�el

�

that pointers

claimed to be u-pointers are in fact unique is not absolute. It provides about

the same level of the certainty that Ei�el provides for type correctness and for

its scope rules. All such integrity conditions are not absolute because Ei�el, like

practically all other languages, has some unsafe features which if used carelessly

may violate the semantics of the language itself, as already mentioned in Foot-

note 3.

The rest of this section is organized as follows: We start with a concept of

u-variables. These are variables declared as unique, each of which contains

either a u-pointer or void. This is followed by rules that de�ne the treatment of

u-variables by the assignment statements, by parameter passing, and by some

other constructs of Ei�el. Finally, in Section 3.5 we introduce means for safe and

e�cient recycling of u-objects.

Two comments about terminology, before we start: First, we use the term

\variable" for what is called an \entity" in Ei�el, which is a name used in the

program text to refer to values, which may, at run time, be associated with

objects. Second, Our term \unique" in this paper should not be confused with

an integer entity declared as \unique" in Ei�el.

3.1 u-variables

Ei�el

�

allows variables of any class to be declared as unique, subject only to a

restriction imposed by Rule 4, introduced later. Such variables, which are guar-

antees to contain either u-pointers or void, may be used to represent attributes

of an object, parameters and local variables of a procedure, or the implicitly de-

�ned result variable of a function; we will refer to such variables as u-attributes,

u-parameters, etc. We also provide for a class to be declared as unique, which

means that all variable declared to be of this class are u-variables. The �rst rule

of Ei�el

�

is as follows:

Rule 1 No transfer of pointers from regular variables into u-variables is allowed.

In particular, this rule prohibits the assignment of a regular variable into a u-

variable, and the passing of a regular actual parameter into a formal parameter

declared as unique. The reason for this prohibition is, of course, that a regular

variable may contain a non-unique pointer.

3.2 Assignment of u-variables

The assignment statement in Ei�el has reference semantics, when applied to

reference variables; i.e., it is a pointer which is copied by an assignment, not the

object being pointed to. The following rule causes pointers to u-objects to be

moved by an assignment, instead of being copied.

Rule 2 An assignments statement v := u, where u is a u-variable, is carried out

as follows: �rst, the value of u is copied into v, then u is nulli�ed; i.e., the value

void (the null pointer of Ei�el) is stored in it.

In other words, if u is a u-variable then its pointer moves into v, leaving void in

its wake. Note that if the right hand side of an assignment is a function call that

returns a u-pointer, then the variable that contains the value of this function

disappears automatically along with its activation record, and is of no concern

to us here. (The assignment statement is also subject to the optional Rule 9,

which deals with the deallocation of unusable u-objects.)

Note that instead of changing the semantics of the conventional assignment

operator, one may prefer to prohibit its use on u-variables, adding a new move

operator to replace it. This is largely a matter of taste.

3.3 The Treatment of Formal Unshareable Parameters

If parameter passing is done by reference, as is the case in Ei�el, it causes no

duplication of pointers. But it presents another kind of di�culty: a u-variable u

used in a call p(u)may be nulli�ed by this call. This would happen, in particular,

if the corresponding formal parameter v is assigned to any other variable. By

Rule 2, this would be a move-assignment that nulli�es v, as well as u. In a sense,

procedure p consumes the u-pointer given to it in u.

Although such consumption of an actual argument is sometimes required, it

is generally undesirable. It is required, for example, in the following situation:

Let object x have a u-component u, and suppose that x performs the operation

s.push(u),

where s is a stack. The pointer in u must be consumed by this operation, so

that it can be stored in the stack, since it points to a u-object. Object x should

\expect" u to be nulli�ed by this call. On the other hand, suppose, that x

performs the operation

t.display(u),

which is supposed to display u on the user-terminal t. It would be quite unrea-

sonable for this call to consume u, yet this is precisely what would happen if

procedure display assigns its formal parameter to anything.

The very concept of unshareable objects would be quite untenable without

the means for ensuring that an actual parameter cannot be consumed, when

consumption is not intended. We, therefore, require a formal u-parameter to be

declared as either consumable or non-consumable (we take the latter, which

is likely to be the more common one, as the default). The treatment of non-

consumable formal parameters is subject to the following constraints:

Rule 3 The value of a formal u-parameter v declared as non-consumable can-

not be changed. This entails the following constraints on the treatment of such

parameters:

1. No assignment into v is allowed. (Actually, in Ei�el this constraint is already

imposed on all formal parameters).

2. v cannot be assigned to any variable.

3. v cannot be used as an actual argument in a procedure call if the correspond-

ing formal parameter is declared as consumable.

There is an important special case of parameter passing in OO programming

which requires special attention here. This is an operation of the form

u.m(...),

where u is a u-variable of some class C, and m is one of the methods of C. The

problem here is that u itself might be nulli�ed by this operation | quite a dis-

concerting prospect. The reason for this is that umust be considered a parameter

to its own method m. In Ei�el, in particular, it is bound to the implicitly de-

�ned local variable Current

3

of method m. Now, if m happens to assign Current

3

The equivalents in other languages have names such as \self" or \this".

to some other variable, then u will be consumed by this operation. Such con-

sumption would not occur if m satis�es the constraints of Rule 3 with respect

to variable Current. This is ensured by the following rule

4

, (which, like all the

rules of Ei�el

�

, can be checked at compile time):

Rule 4 Variables of a given class C can be declared as u-variable only if all the

methods de�ned for this class treat their implicitly de�ned local variable Current

as non-consumable formal parameter, satisfying the constraints of Rule 3.

This constraint on the the classes whose variables can be declared as unshareable

is not as restrictive as it may seem, for two reasons: First, the conditions imposed

by this rule on the use of variable Current are almost always satis�ed in normal

use. For example, an analysis of the o�cial Ei�el library of ISE (their Ei�elBase)

indicates that less than 2% of its classes violate this rule, and an analysis of

three (fairly randomly chosen) applications programs revealed no such violations.

Second, even if some method of a given class C does not satisfy Rule 4, it is

often possible to de�ne a class C1 that inherits from C, rede�ning the o�ending

methods in it, so that C1 would satisfy our rule and can thus be used as a basis

for u-variables.

3.4 Miscellaneous Rules

We describe here the rest of the rules that support unshareable objects in Ei�el

�

.

These rules tend to be more speci�c to the Ei�el language, and of a somewhat

lesser general import than those considered above. The statement of each rule

is preceded by its motivation.

First, most languages provide some means for copying entire objects. (In

Ei�el this can be done by means of explicit copy routines such as copy and

clone, and by the assignment of expanded objects, which are used infrequently

in this language.) Such a copy is problematic if an object being copied contains u-

4

We point out, in response to a question by Bertrand Meyer, that the call u.m(u),

where u is a u-variable and the argument of m is consumable, would cause u to be

consumed, after the call is carried out. We dot not �nd this consequence, of this rare

construct, to be particularly distressing.

attributes. The copying of objects must, therefore, be subjected to the following

rule (stated in very general terms):

Rule 5 The copying of a complete object must not be allowed to copy any u-

attributes of it. Such attributes must be either moved, according to Rule 2, or

not transferred at all by the copy routine. (Another possibility is to completely

disallow any copying of objects with unshareable attributes.)

Second, we confront the following problem

5

: if an object x has an exported

u-attribute u, then due to Rule 2, the assignment statement

v := x.u;

would consume the u attribute of x. But this would violate one of the basic

properties of encapsulation in Ei�el, namely that it is not possible to change

the value of an attribute of an object directly from the outside. To prevent this

violation we impose the following rule:

Rule 6 A u-attribute of a class cannot be exported.

Of course, this does not prevent an object from \voluntarily" giving up one of

its private u-attributes, returning it as a result of one of its methods.

Finally, we must impose the following constraint on once functions, which is

an unusual Ei�el device designed to support globally accessible objects:

Rule 7 The result of a once function cannot be declared as unshareable.

The reason for this rule is that a once function in Ei�el returns the same result

every time it is called. This result, then, is not unique, and thus cannot be

unshareable.

3.5 Recycling of Unshareable Objects

The Ei�el language provides no explicit means for the deallocation of dynamic

objects. This is, because such means would be unsafe due to possible dangling ref-

erence, and because they are considered unnecessary in a language with garbage

5

This problem has been pointed out by Partha Pal

collection. The deallocation of u-objects, however, is quite safe, and, as we shall

see, can be very helpful even in the presence of garbage collection. The following

rule introduces an appropriate deallocation method, recycle, for u-objects

6

.

Rule 8 (the recycle method) Let there be a method recycle that can be ap-

plied to any u-variable u which is not an unconsumable argument of a procedure.

Method recycle does nothing when u is void, and operates as follows, otherwise:

1. It applies recycle (recursively) to all u-attributes of u;

2. It deallocates the object addressed by u, and nulli�es variable u itself.

Note that recycle terminates because pointers to u-objects cannot form a cycle.

Recycling of u-objects can be done in two ways: manually, whenever one

decides that an object is not needed, or automatically, whenever it is evident

that an object cannot be used anymore. Such automatic recycling is established

by the following rule.

Rule 9 (automatic recycling) The recycle method introduced in Rule 8 is

applied automatically, as follows:

1. Before a procedure exits all u-objects addressed by its local variables are re-

cycled (i.e., the method recycle is applied to them.)

2. When an object is collected, during garbage collections, all its unshareable

components are recycled.

3. Before an assignment u := v is carried out, u is recycled.

(Note that automatic deallocation can be established easily in C++, but it

would not be generally safe unless it is applied to u-variables.) The implications

of recycling for storage management are discussed brie
y in Section 4.4.

4 On the Use and Applications of Unshareable Objects

Being used, as we are, to the traditional transfer-by-copy in programming, the

use of u-objects requires a change of viewpoint | one should think about them

6

This rule and the following one are not required for the support of unshareable

objects, but they can help making the most of them.

as things that move from one place to another, just like the physical objects

we manipulate in daily life. As an example of this di�erence, note that a stack

designed to maintain u-objects cannot have the traditional top method, which

returns a pointer to the top of the stack, without removing it. This is inherently

impossible when this top is unshareable.

7

In spite of such unfamiliar aspects of

unshareable objects, we will show in this section that they can be used quite

conveniently in many applications, and can even be shared via intermediate

\handle" objects, when such sharing is required.

We start this section with a very simple programming example, introducing

regular handle-objects that can be used to e�ectively share u-objects. In Sec-

tion 4.2 we discuss applications for which u-objects are naturally suitable. In Sec-

tion 4.3 we show that u-objects can be maintained in arbitrary data-structure,

which makes them usable in a broad range of applications. Finally, in Section 4.4

we discuss the implication of u-objects to storage management.

4.1 Shareable Handles for U-Objects

Suppose that the instances of a given class C are meant to be sometimes hid-

den in some other objects, and be sometimes easily accessible to many parts

of the system. These seemingly contradictory usages can be supported by (a)

making all instances of C unshareable, so they can be truly hidden, when hiding

is called for; and (b) making them accessible through shareable handles, when

wider accessibility is called for.

To see in detail how this can be done, consider the class HANDLE de�ned in

Figure 3 (assuming, for simplicity, that class C itself is declared as unshareable).

Every handle has an u-attribute of class C, called body; and there are two meth-

ods applicable to it: the method install(b), which installs b as the body of the

handle, and remove, which removes the body of the handle, returning it as its

value.

Consider, now, a regular (i.e., shareable) handle h that has an object p as its

body. Although p itself is unsahreable, it can be accesses through h by anybody

7

But one can approximate the conventional top method, if such is desired, by pro-

ducing a copy of the top of the stack and returning a pointer for this copy.

class HANDLE

feature

body:C -- This is a u-variable, because class C is unshareable

install(b:C consumable) is -- b is a consumable argument

do body := b -- this is a move that consumes the actual argument

end;

remove:C is -- the result of this function is unshareable

do result := body the body is consumed by this method

end;

end -- class NODE

Fig. 3. A handle for an u-object

that has a pointer to it, like object x in Figure 4. In particular, if m is one of the

methods of p then x can perform the operation

h.body.m,

thus applying m to p; and so can other objects that have access to h. This

arrangement allows p to be shared, in spite of its unshareable status; but it also

allows one to hide p at will. In particular, a statement

v:=h1.remove

carried out by x (see Figure 4), moves p from h into v, thus hiding this object

inside x, regardless of who shared it before via the handle h. Finally, x may at

any time return p to handle h by means of operation

h1.install(v)

which moves p back into h, making p widely accessible again.

4.2 Natural Applications of Unshareable Objects

Perhaps the most natural and important application of u-objects is as a means

for fortifying encapsulation. Such forti�cation is called for when: (a) an object

v h1

p

h

(a)

body

v h1

body

p

h

(b)

v := h1.remove

State (a) is transformed into state (b) by an operation
 v := h1.remove
carried out by object x

regular pointer

 u-pointer

Legend

an object

a pointer variable

xx

a u-object a u-object

handle handle

Fig. 4. The sharing of a u-object via a handle

has a varying number of components, or (b) the components of an object have an

inde�nite lifetime, or (c) when components are being moved dynamically from

one object to another. If any of these conditions are satis�ed one needs to have

the components of an object allocated on the heap, which, as argued in Section 2,

makes them hard to hide e�ectively, unless they are made unshareable. Making

the component parts of an object unshareable would facilitate, in particular, the

construction of reliable class invariants, and the prevention of race conditions

between threads.

Another natural application of u-objects is discussed in [8], where we show

how such objects can be used to implement tokens | objects that, like the

capabilities of operating systems, represent certain authority. Such unshareable

tokens can be utilized, in particular, for the control of sharing in software systems

such as object-oriented databases.

4.3 General Programming with Unshareable Objects

Besides the above natural applications of u-objects, such objects can be used

e�ectively in a broad range of applications where the ability to prevent aliasing is

important. Indeed, there is no serious limitation to the applicability of u-objects.

We already saw that u-objects can be e�ectively shared via handle objects. One

can, therefore, build arbitrary data structure involving u-objects, although such

objects cannot be used directly as nodes in many kinds of list structures, such as

in doubly linked lists. Indeed, employing a simple generalization of the handles

of the previous section, u-objects can be stored in any graph, with one level of

indirection, as is illustrated in Figure 5 for doubly linked lists. Although such

indirection involves a certain amount of overhead, it is very common in data

structures anyway, and should not be seen as a serious limitation on the use of

u-objects.

legend

regular object

u-object

regular pointer
u-pointer

Fig. 5. A doubly linked list of u-objects

Of course, not all dynamic objects can be made unshareable. At the very

least, we need regular objects to serve as handles for unshareable ones, allowing

for controlled sharing of u-objects, and for their incorporation in complex data

structures.

Finally, it should also be pointed out that u-objects can contain pointers to

regular objects, and that regular objects can point to u-objects (which is the

case with handles, for example). The one thing that should not be allowed is to

have a pointer into an internal component of a u-object. No such pointers are

possible in Ei�el, but they can be generated in C++ by means of the & operator,

which should be prohibited in any implementation of u-objects in this language.

4.4 The E�ect of Unshareability on Storage Management

Unshareable objects should have a signi�cant bene�cial impact on the safety and

e�ciency of storage management, particularly if they are used massively. This is

due to the fact that u-objects can be recycled safely, as described in Section 3.5.

The precise nature of this impact depends on whether or not the language in

question provides garbage collection.

In a language without garbage collection (like C++) the use of u-objects

should have two bene�cial e�ects: First, the conventional unsafe deallocation of

dynamic objects would be replaced by the safe explicit recycling. Second

8

, the

automatic recycling of manifestly unreachable u-objects, as de�ned by Rule 9,

should reduce the amount of memory leakage in the system, i.e., the number of

allocated objects that have no pointers leading to them, and are therefore lost

to the program.

In a language with garbage collection (like Ei�el) the manual and automatic

recycling of u-objects should reduce the frequency of invocation of the expensive

garbage collection procedure, thus making storage management more e�cient.

This e�ect would be particularly strong if u-objects are used for all but the

handle-objects required for complex data structure. This is because in this case

mostly the handle objects would be subject to garbage collection, and since

such objects are likely to have several standard small sizes, which are easier to

manage.

5 Related Work

This work bears signi�cant similarities to two recent e�orts. Both support objects

that satisfy our De�nition 2 and for some of the same reasons that motivated

this work. But there are de�ciencies in both of these proposals, particularly for

object-oriented programming (which, in fairness, was not the context in which

these proposal were made.)

One of these e�orts is by Harms and Weide [4], who may have been the �rst

to challenge the conventional use of copying as the primary mechanism for trans-

ferring data in programming. They proposed to replace all such transfers (i.e.,

8

I owe the last observation to Yaron Minsky.

assignment and parameter passing) with swaps, which would make all dynamic

objects unshareable.

One problem with this proposal is that swapping, as a mechanism for the

transfer of data, is inconsistent with the polymorphic, strongly typed, object

oriented languages. This is because in such languages the type constraints on

assignments are antisymmetric, and thus incompatible with the symmetric swap.

This problem can be demonstrated as follows: Let class C1 be a proper superclass

of C2, and let v1 and v2 be variables of classes C1 and C2, respectively. Now

consider the assignment statement

v1 := v2;

Such statements are allowed in Ei�el, and are very important to OO languages

in general, because they provide for polymorphism. But the swapping paradigm

would replace this statement with a swap of values which, in particular, will place

the value of v1 into v2, violating the requirement that a variable should not hold

instances of its superclasses [6]. Another problem with the scheme proposed by

Harms and Weide is that it fails to protect u-parameters from being consumed

by the procedure they are submitted to. This particular di�culty is even more

serious in Baker's proposal discussed next.

The second work has been recently reported in a paper

9

by Baker [1]. Baker

introduces a concept of use-once variable, which point to what he calls linear

object. His concept of linear object, which was inspired by Girard's linear logic

[3], is equivalent to our u-object. But we �nd the manner these objects are

handled, via use-once variables, problematic. The term \use-once" variables,

indicates that every use of such a variable consumes its value. That is, if u is a

use-once variable, then every procedure call p(...,u,...), and every operation

u.m, nulli�es it. This is a serious drawback, which would make programmingwith

u-object very di�cult and very unsafe, particularly in the context of an object

oriented language. Baker himself states that \The acceptance by a function of a

linear argument object places a great responsibility on the function...". Because,

if the argument of a function is to be retained by the caller, it must be returned

to him as a value of this function. Baker admits that this would make writing

9

This paper also contains a fairly extensive review of previous related works

programs syntactically complex, because functions may have to have several

return values; and he proposes a graphical language as a solution. But what is

perhaps worse about this scheme is that the failure of a function to return some

of its linear (unshareable) arguments may cause very grave consequences to the

internal state of its caller, by having some of its private components consumed.

6 Conclusion

We have argued in this paper that the serious problem of pointer-induced alias-

ing is largely a self in
icted wound, caused by the almost universal practice

in programming to transfer information by copy. We have shown that it takes

only few minor, and virtually costless, modi�cations of a typical programming

language (involving, in part, the transfer of pointers) to ensure that certain vari-

ables contain unique pointers. And we have argued that the use of such variables

are likely to have a salutary e�ect on our ability to reason about large systems,

and on the safety and e�ciency of storage management.

Although the complete implementation of u-pointers and u-objects generally

requires some changes to the de�nition of a language, of the kind described

here for Ei�el, we have constructed a good approximation for u-objects in C++,

which requires no changes in the language itself. This construction, which has

been carried out by Yu-min Liang from Rutgers University, only approximates

u-objects in that it relies on a program to satisfy certain simple constraints, such

as that the & operator is never applied to objects designated as unshareable.

This construction will be described elsewhere.

Acknowledgment : I would like to thank Alex Borgida, Rock Howard, Yaron Min-

sky, Partha Pal and Yossi Stein for many useful conversation during the writing

of this paper. I am also indebted to Bertrand Meyer for his many useful com-

ments when reviewing this paper.

References

1. H.G. Baker. Use-once variables and linear objects | storage management, re
ec-

tion and multi-threading. ACM SIGPLAN Notices, January 1995.

2. L. Cardelli, J. Donahue, L. Glassman, M. Jordan, and G. Nelson. Modula-3 report

(revised). Technical Report 52, Digital System Research Center, November 1989.

3. J. Y. Girard. Linear logic. Theoretical Computer Science, pages 1{102, 1987.

4. Dougles E. Harms and Bruce W. Weide. Copying and swapping: In
uences on the

design of reusable software components. IEEE Transactions on Software Engi-

neering, pages 424{434, May 1991.

5. W Landi. Undecidebility of static analysis. Lett. Program. Lang. Syst., 1(4), De-

cember 1992.

6. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1987.

7. B. Meyer. Ei�el: The Language. Prentice-Hall, 1992.

8. N.H. Minsky. On the use of tokens in programming. Technical report, Rutgers

University, LCSR, October 1995.

9. D.L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12), December 1972.

10. R. Sethi. Programming Languages, Concepts and Constructions. Addison Wesley,

1989.

11. A. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.

Table of Contents

1 Introduction : 2

2 The Pitfalls of Dynamic Objects : : : : : : : : : : : : : : : : : : 3

2.1 The Di�culty in Hiding Dynamic Objects 3

2.2 The Adverse e�ects of Dynamic Objects on Storage Management 5

2.3 The Con
ict Between Encapsulation and Pointers 5

2.4 A Di�culty with Threads . 6

3 Unshareable Objects & Unique Pointers : : : : : : : : : : : : : 6

3.1 u-variables . 8

3.2 Assignment of u-variables . 9

3.3 The Treatment of Formal Unshareable Parameters 9

3.4 Miscellaneous Rules . 11

3.5 Recycling of Unshareable Objects 12

4 On the Use and Applications of Unshareable Objects : : : : : 13

4.1 Shareable Handles for U-Objects 14

4.2 Natural Applications of Unshareable Objects 15

4.3 General Programming with Unshareable Objects 16

4.4 The E�ect of Unshareability on Storage Management 18

5 Related Work : 18

6 Conclusion : 20

This article was processed using the L

A

T

E

X macro package with LLNCS style

